A best two-dimensional space of approximating functions
نویسندگان
چکیده
منابع مشابه
FUZZY HV -SUBSTRUCTURES IN A TWO DIMENSIONAL EUCLIDEAN VECTOR SPACE
In this paper, we study fuzzy substructures in connection withHv-structures. The original idea comes from geometry, especially from thetwo dimensional Euclidean vector space. Using parameters, we obtain a largenumber of hyperstructures of the group-like or ring-like types. We connect,also, the mentioned hyperstructures with the theta-operations to obtain morestrict hyperstructures, as Hv-groups...
متن کاملSolving a class of nonlinear two-dimensional Volterra integral equations by using two-dimensional triangular orthogonal functions
In this paper, the two-dimensional triangular orthogonal functions (2D-TFs) are applied for solving a class of nonlinear two-dimensional Volterra integral equations. 2D-TFs method transforms these integral equations into a system of linear algebraic equations. The high accuracy of this method is verified through a numerical example and comparison of the results with the other numerical methods.
متن کاملSeries Representations for Best Approximating Entire Functions of Exponential Type
Let > 0 not be an even integer. We derive Lagrange type series representations for the entire function of exponential type 1 that minimizes jjjxj f (x)jjLp(R) amongst all such entire functions f , when p = 1 and p =1. This minimum arises as the scaled limit of the Lp error of polynomial approximation of jxj on [ 1; 1], and is one representation of the Lp Bernstein constant.
متن کاملApproximating a Three-Dimensional Fluidized Bed With Two-Dimensional Simulations
Fluidized beds can be used to gasify biomass in the production of producer gas, a flammable gas that can replace natural gas in process heating. Modeling these reactors with computational fluid dynamics (CFD) simulations is advantageous when performing parametric studies for design and scale-up. From a computational resource point of view, two-dimensional simulations are easier to perform than ...
متن کاملFuzzy Best Simultaneous Approximation of a Finite Numbers of Functions
Fuzzy best simultaneous approximation of a finite number of functions is considered. For this purpose, a fuzzy norm on $Cleft (X, Y right )$ and its fuzzy dual space and also the set of subgradients of a fuzzy norm are introduced. Necessary case of a proved theorem about characterization of simultaneous approximation will be extended to the fuzzy case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1970
ISSN: 0021-9045
DOI: 10.1016/0021-9045(70)90059-6